Noticias


Visita de Naresh Shanbhag
Presentación del Eminente prof. Naresh Shanbhag

El día 2 de Marzo del 2023 hemos tenido una presentación del Eminente prof. Naresh Shanbhag de la Univ. de Illinois Urbana-Champaign, quien está de estancia en el IMSE:
2 Marzo 2023

LEER MÁS

Defensa de Tesis Doctoral
Defensa de Tesis Doctoral

Behavioral Modelling of CMOS SPADs based on TCAD Simulations.
Juan M. López Martínez
24 Enero 2023

Publicación en el blog La Cuadratura del Círculo
Publicación en el blog La Cuadratura del Círculo

La computación neuromórfica de alta velocidad, una realidad cada vez más cercana.
Rafaella Fiorelli

LEER MÁS

Seminario IMSE-Forum
Seminario IMSE-Forum

Error correcting codes for hyper-speed memory and data storage.
IEEE Distinguished Lecturer Prof. Xinmiao Zhang, Dept. of Electrical & Computer Engineering, Ohio State University

LEER MÁS

Proyecto DIGISOLAR
Luz verde para la financiación con fondos europeos del proyecto DIGISOLAR

El proyecto de sensor solar con tecnología andaluza para satélites recibe una subvención del programa para Agrupaciones Empresariales Innovadoras (AEI) del Ministerio de Industria, Comercio y Turismo, a través de los fondos Next Generation EU.

NOTA DE PRENSA

Proyecto NimbleAI
Kick-start del proyecto europeo NimbleAI

Los 19 socios europeos del proyecto se reunieron en Arrasate-Mondragón (España) para poner en marcha oficialmente NimbleAI, el proyecto de investigación de 3 años y 10M € que mejorará la eficiencia energética y el rendimiento de los chips neuromórficos de próxima generación que sostienen la visión basada en eventos.

NOTA DE PRENSA

EVENTOS Y NOTICIAS ANTERIORES

Nueva Directora del IMSE-CNM


La investigadora del IMSE Teresa Serrano Gotarredona ha sido nombrada nueva Directora del Instituto de Microelectrónica de Sevilla.

LEER MÁS

Formación en el IMSE


- Doctorado
- Máster
- Grados
- Trabajos Fin de Grado
- Prácticas en Empresa

LEER MÁS

Publicaciones recientes


Band-Pass Sigma-Delta Modulation: The Path towards RF-to-Digital Conversion in Software-Defined Radio
J.M. de la Rosa
Journal Paper · Chips, vol. 2 no. 1, articles 44-69, 2023
MDPI    ISSN: 2674-0729
resumen      doi      

This paper reviews the state of the art on bandpass sigma-delta modulators (BP-sigma-deltaMs) intended to digitize radio frequency (RF) signals. A priori, this is the most direct way to implement software-defined radio (SDR) systems since the analog/digital interface is placed closer to the antenna, thus reducing the analog circuitry and doing most of the signal processing in the digital domain. In spite of their higher programmability and scalability, RF BP-sigma-deltaM analog-to-digital converters (ADCs) require more energy to operate in the GHz range as compared with their low-pass (LP) counterparts. This makes conventional direct conversion receivers (DCRs) the commonplace approach due to their overall smaller energy consumption. This paper surveys some circuits and systems techniques which can make RF ADCs and SDR-based transceivers more efficient and feasible to be embedded in mobile terminals.

Ultra-High-Resistance Pseudo-Resistors with Small Variations in a Wide Symmetrical Input Voltage Swing
F. Karami-Horestani and J.M. de la Rosa
Journal Paper · IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE    ISSN: 1549-7747
resumen      doi      

This paper presents a new strategy and circuit configuration composed of serially-connected PMOS devices operating in the subthreshold region for implementing ultra-highvalue resistors required in very low-frequency active-RC filters and bio-amplifiers. Depending on the application, signal bandwidth for instance in bio-amplifiers may vary from a few mHz up to a maximum of 10 kHz. Three different resistor structures are proposed to achieve ultra-high resistance. While ranging in the order of several TY, the proposed ultra-high-resistance pseudoresistors occupy a small on-chip silicon area, which is one of the main issues in the design of analog front-end circuits in ultra-low power implantable biomedical microsystems. In addition, these ultra-high-value resistors lead to the use of a small capacitance to create a very small cut-off frequency. Therefore, the large area to implement capacitances is also considerably reduced. The proposed resistor structures have very small variations about 7% and 12% in a wide input voltage range (-0.5 V +0.5 V), thus significantly improving the total harmonic distortion of bioamplifiers and the analog front-end of the system. Simulation results of different circuits designed in a 180nm CMOS technology, are shown to demonstrate the advantages of the proposed ultra-high-resistance pseudo-resistors.

A self-powered asynchronous image sensor with independent in-pixel harvesting and sensing operations
R. Gomez-Merchan, J.A. Leñero-Bardallo and A. Rodríguez-Vázquez
Conference · IS&T International Symposium on Electronic Imaging 2023
resumen     

A self-powered asynchronous sensor with a novel pixel architecture is presented. Pixels are autonomous and can harvest or sense energy independently. During the image acquisition, pixels toggle to a harvesting operation mode once they have sensed their local illumination level. With the proposed pixel architecture, most illuminated pixels provide an early contribution to power the sensor, while low-illuminated ones spend more time sensing their local illumination. Thus, the equivalent frame rate is higher than the one offered by conventional self-powered sensors that harvest and sense illumination in independent phases. The proposed sensor uses a Time-to-First-Spike readout that allows trading between image quality and data and bandwidth consumption. The device has HDR operation with a dynamic range of 80 dB. Pixel power consumption is only 70 pW. The article describes the sensors and pixel’s architectures in detail. Experimental results are provided and discussed. Sensor specifications are benchmarked against the art.

CMOS Front End for Interfacing Spin-Hall Nano-Oscillators for Neuromorphic Computing in the GHz Range
R. Fiorelli, E. Peralias, R. Mendez-Romero, M. Rajabali, A. Kumar, M. Zahedinejad, J. Akerman, F. Moradi, T. Serrano-Gotarredona and B. Linares-Barranco
Journal Paper · Electronics, vol. 12, no. 1, article 230, 2023
MDPI    ISSN: 2079-9292
resumen      doi      

Spin-Hall-effect nano-oscillators are promising beyond the CMOS devices currently available, and can potentially be used to emulate the functioning of neurons in computational neuromorphic systems. As they oscillate in the 4-20 GHz range, they could potentially be used for building highly accelerated neural hardware platforms. However, due to their extremely low signal level and high impedance at their output, as well as their microwave-range operating frequency, discerning whether the SHNO is oscillating or not carries a great challenge when its state read-out circuit is implemented using CMOS technologies. This paper presents the first CMOS front-end read-out circuitry, implemented in 180 nm, working at a SHNO oscillation frequency up to 4.7 GHz, managing to discern SHNO amplitudes of 100 mu V even for an impedance as large as 300 ohm and a noise figure of 5.3 dB(300 ohm). A design flow of this front end is presented, as well as the architecture of each of its blocks. The study of the low-noise amplifier is deepened for its intrinsic difficulties in the design, satisfying the characteristics of SHNOs.

TODAS LAS PUBLICACIONES

Video institucional del IMSE


Qué hacemos en el IMSE


El área de especialización del Instituto es el diseño de circuitos integrados analógicos y de señal mixta en tecnología CMOS, así como su uso en diferentes contextos de aplicación tales como dispositivos biomédicos, comunicaciones inalámbricas, conversión de datos, sensores de visión inteligentes, ciberseguridad, computación neuromórfica y tecnología espacial.

La plantilla del IMSE-CNM está formada por unas cien personas, entre personal científico y de apoyo, que participan en el avance del conocimiento, la generación de diseños de alto nivel científico-técnico y la transferencia de tecnología.

LEER MÁS

Webs relacionadas con el IMSE


COMPARTIR